

Data-driven Safety Filters for eVTOL Flight Envelope Protection

Motivation for Data-driven Safety Filters

Main two limitations of traditional safety filters based on certificate functions:

- Such certificate functions are hard to verify for high-dimensional and hybrid systems.
- Such safety filters are not robust to the uncertainties of the actual plant.

Methods

Collaboration with NASA and Bechamo LLC with supports in part from NASA SBIR, RVLT, and TTT MCAAD programs.

Proposed Framework [8]:

<u>Main Challenges</u>

Hybrid system (hover vs. cruise) High-dimensional system.

<u>Near-term Deliverable</u> Apply HJ reachability to the reduced-order model of Tiltwing.

References

[1] GP-CLF-SOCP: Castaneda*, Choi* et al., Gaussian Process-based Min-norm Stabilizing Controller for Control-Affine Systems with Uncertain Input Effects and Dynamics, ACC 2021. [2] GP-CBF-CLF-SOCP & Feasibility Analysis: Castaneda*, Choi* et al., Pointwise feasibility of gaussian process-based safety-critical control under model uncertainty, CDC 2021. [3] Safe online learning with GP-CBF-CLF-SOCP: Castaneda*, Choi et al., Probabilistic Safe Online Learning with Control Barrier Functions, submitted to CDC 2022. [4] Reachability analysis for hybrid systems with multiple modes: Tomlin et al., Computational techniques for the verification of hybrid systems, IEEE Access, 2003. [5] Reachability analysis for hybrid systems with state jumps: Choi et al., Computation of RoA for Hybrid Limit Cycles Using Reachability: An Application to Walking Robots, RA-L, 2022. [6] Deep Neural Network-based HJ Reachability: Bansal, Tomlin, Deepreach: A deep learning approach to high-dimensional reachability, ICRA 2021. [7] Whiteside et al., Design of a Tiltwing Concept Vehicle for Urban Air Mobility, NASA, 2021 [8] Safe learning framework based on HJ reachability: Herbert, Choi, et al., Scalable learning of safety guarantees for autonomous systems using Hamilton-Jacobi reachability, ICRA 2021

Learning-based Control for Hybrid Systems

Jason J. Choi, Alonso Marco, Claire J. Tomlin

HJ reachability analysis for hybrid systems [4, 5]

• [4]: HJ reachability frameworks for systems involving transitions between multiple modes.

• [5]: HJ reachability frameworks are extended to hybrid systems with discontinuous reset maps by incorporating the value remapping principle. • Applied to the stabilization of walking robots. • Example: Compass-gait walker

Maximal region-of-attraction verified from HJ reachability

• **On-going work:** Extending [5] to high-dimensional hybrid systems by using neural-network-based approximate dynamic programming [6].

Application: Flight Envelope Protection of NASA Tiltwing Concept Vehicle (eVTOL) [7]

Model Improvement

Model-based Continual Learning For Quadruped Locomotion

Learn new model & policy at deployment time

Robust/zero-shot policies trained in simulation assume access to the distribution of the real-world data

- There will always be new situations (e.g., corner cases) not seen at training time
- Re-learn dynamical models and policies at deployment time

- Current environment $x_{t+1} = f^j(x_t, u_t)$ Models $\{\psi_0,\ldots,\psi_i\}$
- Policies $\{\pi(\cdot|\theta_0), \ldots, \pi(\cdot|\theta_i)\}$

Dynamics: Gaussian process + informed prior

Motivation

• Achieve $\mathcal{O}(N)$ complexity with dataset size • Data-driven prior imposes less structure than white priors

GP model [2]

$$\begin{bmatrix} x_{t+1}^{(1)} \\ \vdots \\ x_{t+1}^{(D)} \end{bmatrix} = \begin{bmatrix} \beta_1^\top \\ \vdots \\ \beta_D^\top \end{bmatrix} \phi(x_t, u_t) + \varepsilon$$

$$\beta_d \sim \mathcal{N}(m_d, \Lambda_d)$$

Random Fourier Features [3]

$$\phi(x_t, u_t) = \sqrt{2} \cos(\omega_{\mathbf{x}}^{\top} x_t + \omega_{\mathbf{u}}^{\top} u_t + b)$$

$$b \sim \mathbf{U}(0, 2\pi)$$

$$\omega_{\mathbf{x}}, \omega_{\mathbf{u}} \sim S_d(\omega_{\mathbf{x}}, \omega_{\mathbf{u}}) \propto |G_d(j\omega_{\mathbf{x}}, j\omega_{\mathbf{u}})|$$

Spectral density: data-driven

$$G_{d}(j\omega) = \int_{\mathcal{X},\mathcal{U}} e^{-j\omega_{\mathbf{x}}^{\top}x_{t} - j\omega_{\mathbf{u}}u_{t}} f_{d}(x_{t}, u_{t}) \mathrm{d}x_{t} \mathrm{d}u$$
$$\approx \sum_{t=0}^{T-1} e^{-j\omega_{\mathbf{x}}^{\top}\tilde{x}_{t} - j\omega_{\mathbf{u}}\tilde{u}_{t}} \tilde{x}_{t+1}^{(d)}$$
$$\propto \sum_{t=0}^{T-1} \cos(\xi_{t}) \tilde{x}_{t+1}^{(d)} - j\sin(\xi_{t}) \tilde{x}_{t+1}^{(d)}$$
$$\xi_{t} = \omega_{\mathbf{x}}^{\top} \tilde{x}_{t} + \omega_{\mathbf{u}} \tilde{u}_{t}$$

Posterior

$$\hat{x}_{t+1}^{(d)} = \hat{\beta}_d^{\top} \phi(x_t, u_t)$$

 $\hat{\beta}_d \sim \mathcal{N}(\hat{\beta}_d; \mu, \Sigma)$

$$-\log p(y_{t+1}|x_t,u_t)$$

References

learning, MIT press, 2006 NeurIPS, 2007

example

-reaching task with unknown disturbance Model prediction error as triggering mechanism

[1] Chua, K., et al. Deep reinforcement learning in a handful of trials using probabilistic dynamics models, NeurIPS 2018 [2] W, Christopher, C. E. Rasmussen, Gaussian processes for machine

[3] R, Ali, B. Recht, Random features for large-scale kernel machines,

but this article solely reflects the opinions and conclusions of its authors and not any NASA entity.